Calculators are not allowed

Answer the following questions:

1. (a) (3 points) Evaluate the following limit (if it exists):

$$\lim_{x\to 0}\frac{\cos x-1}{x\sin x}.$$

(b) (3 points) State Rolle's theorem.

2. Let
$$f(x) = (x^2 - x - 2)^{\frac{2}{3}}$$
.

- (a) (2 points) Discuss the continuity of f.
- (b) (4 points) Find the points at which the graph of f has a cusp (if any).
- 3. (6 points) If a box with a square base and an open top is to have a surface area 300 cm², find its maximum volume.
- 4. (4+4 points) Evaluate the following integrals,

(a)
$$\int \left(1 + \frac{1}{x}\right)^{-3} \frac{1}{x^2} dx$$
,

(b)
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x + 1} \cos x dx.$$

5. (a) (3 points) Show that

$$\int \sin^3 x dx = \frac{1}{3} \cos^3 x - \cos x + C,$$

where C is an arbitrary constant.

- (b) (3 points) If the average value of $f(x) = x^3 + bx 2$ on the interval [0, 2] is 4, find the constant b.
- 6. (6 points) The region bounded by the graphs of the curves $y = x^2 3$ and $y = 5 x^2$ is revolved about the line x = 6. Find the volume of the resulting solid.
- 7. (a) (6 points) Let $f(x) = \int_0^x \sqrt{t^4 + 2t^2} dt$. Find the arc length of the graph of the equation y = f(x) from A(0, f(0)) to B(1, f(1)).
 - (b) (6 points) Find the area of the region bounded by the graphs of $y = x^2$ and $y = x^3$.